by: Jason A. Sutula

This past Friday, Sara Caton presented an excellent take on the potential electrocution risk to fire service personnel when encountering a roof-mounted solar array during an active fire event. Her post raises several good points that must be accounted for in both the training of firefighting personnel as well as understanding the interaction between a solar panel installation and the building construction elements below it.

As a follow up to her post, I received a comment from Professor James (Jim) Milke, Chair of the Department of Fire Protection Engineering at the University of Maryland. Professor Milke reminded me that Rosalie Wills led a group of students that put together a report for the Fire Protection Research Foundation (FPRF) on the hazard assessment of commercial installations of roof-mounted solar panels. The report highlighted a range of environmental exposures in addition to the more common discussion of the performance of the array when involved in fire.

Structural loading, wind loading, hail, snow, debris accumulation, seismic activity, and the hazards of fire are all addressed within the report. A common theme among many of the hazards that were assessed was the idea that the weight of the solar array is not negligible. A photovoltaic array is commonly mounted on to a typical roof assembly that was not originally designed to account for the additional loading of the array. While the roof assembly can support the loading of the array in normal conditions, wind loading, snow loading, and loading from other debris accumulation can cause stresses within the roof assembly over time.

When fire is added to the equation, the increased structural loading on the roof assembly can cause more rapid failure and collapse, especially if an interior fire exposes the roof members directly below the area where the solar array is mounted. Destruction of the supporting building construction under the solar array will cause damage to the electrical distribution system from the array to the structure leading to the development of the electrical hazards to firefighters as discussed in the previous post.

The model building codes have developed new provisions that address some of the hazards analyzed in the FPRF report. The 2012 edition of the International Building Code (IBC) requires a solar array system to have the same fire class rating as the roof assembly. Additionally, Underwriters Laboratory (UL) Standard 1703 (Standard for Flat-Plate Photovoltaic Modules and Panels) was updated with additional testing methods to be able to account for a roof mounted photovoltaic fire class assembly rating. Finally, NFPA 70, the National Electric Code (NEC), has included many provisions within the latest edition to limit the potential of an electrical failure of a photovoltaic system. Progress in the fire safety and minimization of the hazards of these systems continues to be made.

If interested in more information, take the time to watch today’s embedded YouTube video. This was created by the NFPA, and Ken Willette does a good job of pointing out the resources available for fire safe installations of photovoltaic systems.

Advertisements
Comments

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s